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A b s t r a c t  

In this paper we will prove new lower bounds for the first eigenvalue of the Dirac operator on 
two-dimensional Riemannian manifolds diffeomorphic to S 2 with an isometric S l-action. We show 
examples, where this new bound improves the known lower bounds and coincides in the limit with 
the known upper bounds. © 1999 Elsevier Science B.V. All rights reserved. 
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1. I n t r o d u c t i o n  

On closed Riemannian spin manifolds the spectrum of the Dirac operator is discrete and 

real. There are a few examples where the spectrum is well known, e.g. the fiat toil [12], 

spheres of constant curvature [17] and spherical space forms [4] (for an overview and more 

examples cf. [2]). For the sphere S n of constant sectional curvature 1 the Dirac operator has 

the eigenvalues 

-4- + k  , k > 0 ,  

with multiplicity 2 In/2] (k +~,- I). 
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In general there are only estimates for the eigenvalues of the Dirac operator. For an 

n-dimensional closed Riemannian spin manifold M '~ with scalar curvature R, Friedrich 

has proved in [13] that the eigenvalues satisfy 

1 n 
)v2 > - - - R m i n ,  (1) 

- 4 n - 1  

with Rmin :=  min{R(m) lm ~ M"}.  
For two-dimensional manifolds (M 2, g) of  genus zero the Dirac operator has no kernel, 

because any metric g on S 2 is conformally equivalent to the standard metric, and the 

inequality 

4rr X 2 > 
_ vol(S2 ' g) (2) 

holds for the eigenvalues (cf. [5,9,16]). 

There are also some upper bounds for the first positive eigenvalue of  the Dirac operator, 

e.g. in [8] it is shown that for compact connected Riemannian spin manifolds of  dimension 

2m and positive sectional curvature K with maximum Kmax the inequality 

)v 2 < 4m-lmKmax 

for the first positive eigenvalue holds. 

Another intrinsic upper bound for Riemannian manifolds M 2 diffeomorphic to S 2 is 

given in [ 1 ]: Let 

where U(S  2, M 2) denotes the set of  all uniformisation maps preserving the orientation. 
Then 

4rr 6Dirac(M 2, g) 

X 2 < vol(M2 ' g) + vol(M2 ' g) (3) 

For manifolds M ' ,  which are isometrically immersed in ~,,+1, extrinsic upper bounds 

are known (e.g. [8,10]). In [6,14] the following inequality for the first positive eigenvalue 

of the Dirac operator on M '* ,--+ ~,,+l with the induced spin structure on M n is shown 

n 2 f H 2 dM 
;v 2 < (4) 

- 4 v o l ( M )  ' 

where H denotes the mean curvature. 
In [ 1 ] the inequality 

X 2 < fM 2 H 2 ( f  2 + G 2 ( f ) ) d M  2 + fM 2 ]grad f12(1 + [ G ' ( f ) ] e ) d M  2 

_ f M z ( f 2  -+- G 2 ( / ) )  d m  2 , (5) 

where f : M 2 --+ N, G " [~ --+ N are smooth functions and G t denotes the derivative of G, 
has been proved. 
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In this paper we give new lower bounds for the eigenvalues of  the Dirac operator 

on two-dimensional manifolds of  genus 0 with isometric SI-action. We will show the 

following: 

Theorem 1. Let  (M 2, g) be a c losed Riemannian mani fold  o f  genus 0 with an isometric  

S ~ -action with max imum length o f  orbits  2:rfmax. Then 

1. )~ > 1/2fmax- 
2. The mult ipl ici ty o f  an eigenvalue )~n, n > O, with 

2n - 1 2n + 1 
- -  < ) ~ n  < - -  
2 J']~ax - 2fmax 

is at most  2n. 

On the one hand there are many examples, where this estimate improves the known 

lower bounds for the Dirac operator on surfaces, and on the other hand, it shows that the 

known upper bounds and the new lower bound coincide in the limit for the ellipsoid. More 

exactly: 
For the ellipsoid E (a) with axes (a, 1, 1) with a > 1, the minimal scalar curvature is 1/a 2 

and the volume is 2zr + (4:rraZ/x/~a 2 - 1) arcsin ~/(a 2 - l ) / a  2. Therefore the estimates (1) 

and (2) for the smallest positive eigenvalue ~.(a) on the ellipsoid E(a )  give no lower bound 

in the limit a -+ ~ ,  whereas Theorem 1 shows 

)~(a) > ~ for everya  > 0 .  

On the other hand, the inequalities (4) and (5) give 

I lim ,k(a) < 

(cf. [1]), which is the optimum result. 

In Section 2 we will give some general facts about the Dirac operator on surfaces of 

rotation and calculate the eigenvalue equation in special coordinates, in Section 3 we will 

use this equation to get the estimate. 

2. The Dirac operator  on surfaces of  rotation 

Let (M, g) be a two-dimensional oriented Riemannian manifold M ~ S 2 with an isomet- 

ric S l -action, whose principal orbits are free. Then M / S  I -~ [0, 1], the dense submanifold 
M0 of  principal orbits is an S 1 -fibre bundle over M o / S  I = (0, 1) (cf. [3, Proposition 8.2]) 

and the two orbits, which are not free are fixed points. 
Let y : I = (0, L) --+ M0 be a section of  M0 ~ M o / S  I orthogonal to the fibres 

parametrised by arc length and f : I ~ ~+,  f ( t )  = (vol(S j • F( t ) ) ) / 2 z r ,  then 

(Mo, g)-----(l × S I, dt 2 + f 2 ( t )  d~b 2) = :  I × f  S I. 
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For given f the closure of  I x f  S 1 is a C~-mani fo ld  iff f ( 0 )  = - f ( L )  = 1 and f extends 
at zero to an odd smooth function and similarly at L. 

Example .  For the ellipsoid with axes (a, b, b) we have f ( t )  = bsin  x(t) ,  with t(x) = 

fo ~/a2sin249+b2cOs2dpd(o't E (O,L), L :=  fog/a2 sin2 ~b + b2 cOs2 ~bd~b" 

The frame-bundle P of I x f S l is trivialised by the canonical section s :=  (at, 04,/10¢]). 
S 2 has exactly one spin structure given by the Hopf  bundle. Therefore the spin bundle of  

M is given by 

Oil x f  S I ~ I x S 1 × S l --+ P, (t, Zl, Z2) I---> (t, Zl, ZlZ2) 

and the identifications (0, 4), z) ~ (0, 0, z) and (1, q~, z) "~ (1, 0, e-i4~z) at the poles. 

The section s does not lift to a global section of Q II x f  S l . A local lift g of  s satisfies 
g (t, 0) = - g (t, 2zr) and the section ge i4'/2 is globally defined on I x f S I. In a neighbourhood 

of the poles ge i~/2 and ge -i4'/2, respectively, are smooth local sections of the spin-bundle 

over M. 
The Levi-Civita connection V on I x f  S 1 is given by 

a~ ) f(t) vat, i-~ I = f(t)o "2, 

with ~r 2 = (0,/10~1, .). 
The spinor derivative for a local spinor 

[s, 0 ] ,  with 0 =:  02 E CeC(I x f  \(t, 1),(;2) 

is given by 

V0=d0+ 7 02 

and therefore the Dirac operator by 

{ ( I / f ) O ~  + i~2 + ( i / 2 ) ( f / f )O:  "~ 
D O  

- ( l / f ) 0 1  + i~l  + ( i / 2 ) ( f / f )O l  i] ' 

where 0~ = OO0i and ~i = at 0i (for details concerning the Dirac operator see [11] or [15]). 
The Dirac operator preserves the Fourier decomposition of 0 ,  so we restrict to spinors 

of  the form O(t,  4)) = O(t)e ikea with O =:  (o'2) ~ C~(I ,  C2). 

Then 0 = Oe ik¢ defines a spinor on I x f  S 1 i f f  k = (2n  -4- 1 ) / 2 ,  n e 77 and on these 
spinors the Dirac operator acts as 

( 0 2 + ( 1 / 2 f ) ( 2 k + f ) 0 2  )eik4~" 
DO = i Oi -'}- (1/2f)(--2k + f)Ol 
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A spinor ~" = 0(t)e ik4' E CVC(l x f  S l \ ( t ,  1), C 2) is globally defined on M iff 01(t) 
eifalk-J/21, O l ( t -  1)e i4~(k+1/2), O2(t)e i4J{k +l /2), and 0 2 ( t -  1)e i~/k- j/2) define smooth func- 

tions at 0, since se i4'/2 is a smooth local section at 0 x S I and ,~e -i4~/2 at 1 x S 1 . This means 

that 01 vanishes at zero of  order Ik - ½1 and at 1 of  order Ik + ½1, 0e vanishes at zero of 

order Ik + ½l and at 1 of  order Ik - ½1- 

If (M, g) is a Riemannian manifold with isometric S j -action, then there exists in every 
neighbourhood of  g in the C I -topology a metric ~ such that (M, ~) is the closure of  I x/ :  S I 

with an analytic function f .  

In [7] it is shown that a small deformation of  the metric in the C I-topology does not 

change the eigenvalues of  the Dirac operator too much, more exactly. 

Lemma 1 [7, Proposition 7.1]. For ~ > O, A > 0 there exists a Cl-neighbourhood of 
g, such that for any ~ in this neighbourhood with associated Dirac operator {) and any 
)v 6 [ - A ,  A] we have 

dim EI~I(D) <_ dim E[;~_~.~,+~I(/)) < dim Elz_2e.~.+2~l(D), 

where Ela.h I is the direct sum of eigenspaces of D for the eigenvalues ~. c [a, b]. 

So we will restrict in the following to I x f  S 1 with analytic f .  

3. Lower bounds for eigenvalues 

We consider the Dirac operator on an S 1 -manifold which is the closure of  I x f  S l with 

analytic f : I ----* R. As shown in Section 2 the eigenvalue equation for a local spinor 
= 0e i4'k is given by 

L0, = i  02 --k ~ f ( 2 k  + f)02 , 

)vO2 = i (Ol ff- ~----f(-2k + j¢)Ol ) , 

with boundary conditions ]Oi (0) 1 < a~, 
ensure that 0 describes an L2-spinor and thus as a solution of the eigenvalue equation a 

C~C-spinor. 
fO, It)]ei(ok is an eigenspinor with eigenvalue We restrict to the case ;v > 0 and k > 0: If ~02/t)1- 

)v, then also [°e(t)]e-i4~k and ( o~ It) ]eiq~k is an eigenspinor with eigenvalue -~.. 
~,01 ( t ) !  ' ~ ,--02(t)]  

Furthermore we can assume 01 as imaginary and 02 real. 

(6) 

(7) 

IOi (L)I < ~ .  These boundary conditions already 

Lemma 2. I f  O| and 02 are solutions of(6)  and (7), k > 0 and 01 and 02 are bounded at 0 
and L, then 101 (0)/02(0)1 = oo and 101 ( L ) /O2( L )I = O. 

Proof.  If  0l, 02 are solutions of  (6) and (7), then 

2 f  ,k 2)  0t (8) 
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f { (2k + - f ) 2  J" )~2) 02. (9) 
02 = --  02 -'F ~ 4 / 2  2 f  

Thus the characteristic equations of  Eqs. (8) and (9) at zero are 

v ( v -  1) + v - ¼(1 - 2k) 2 = 0 ,  

v ( v -  1) + v - ¼(1 + 2k) 2 = 0 .  

Therefore locally at 0 any solution of (8) and (9), which is bounded, is given by 

01(Z) : Clzk- l /2(1  + hi(z)) ,  02(z) : C2zk+l/2(1 + h2(z)), 

with analytic hi and hi (0) = 0. Indeed taking the expansion in power series in (6) we see that 
if01 (t) vanishes of  order m at 0, then 02 (t) vanishes of order m + 1. Thus 101 (0)/02 (0) I = cx~. 

The same argument at L gives 101 (L)/O2(L)I = O. [] 

Example .  For the sphere Eqs. (6) and (7) give 

( 1 (2k+cost)02),  (10) Z01 = i 02 q- 2 sin t 

( 1 ( -2k+cos t )O,) ,  (11) )~02=i 0 1 + 2 s i n t  

with the eigenfunctions 01 (t) = i cos( t /2)  and 02(t) = sin(t /2) for ~. = 1 and k = ½. 

If  01 and 02 are solutions of  (6) and (7) which are bounded at 0 and L, then i(01/02) is a 
(possibly singular) solution of the real Riccati equation 

2k 
= Zz- + ~ - z  + )~, (12) 

with boundary conditions 

Iz(0)l = ~ ,  z(L) = 0. (13) 

L e m m a  3. I f (12)  has a solution with boundary conditions (13), then )~ > k/fmax with 
fmax := maxr~I0.t.] f(t). 

Proof.  Consider the t-dependent vectorfield vt on ~ given by 

2k 
vt (z) :=  )~z 2 + f - - ~ z  + )~ for t ~ (0, L). 

y : (0, L) --+ R is a solution of (12) iff y ( t )  = vt(y(t)). 
For z > 0, k > 0,)~ > 0 the vectorfield vr satisfies vt(z) > 0 for every t 6 (0, L). 

This means that for every solution y of  (12) and to ~ (0, L) with y(t0) > 0 the inequality 
y(to) > 0 holds. 
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If)~ < k/fmax than vt ( - 1 )  = 20~ - k / f ( t ) )  < 0 for every  t 6 (0, L),  which means  that 

every  solution V of  (12) and t0 6 (0, L) with V(t0) = - 1  satisfy y(t0)  < 0. 

Therefore  for every solut ion V : (0, L)  ~ ~ o f  (12) with V (L) = 0 we  get - 1 < V (0) < 

0 if  0 < )~ < k/fmax. [] 

For the Dirac operator  this yields the fo l lowing result: 

T h e o r e m  2. Let M -~ S 2 be a surface o f  rotation with Mo : I × f S I, then 

1. The smallest positive eigenvalue )~lkl+ I/2 with an eigenspinor locally given by ~ : 0e iok 

satisfies kikl+l/2 > ]kJ/ fmax, especially the smallest eigenvalue satisfies 

1 
)~1 > - -  

2 f m ~ , x  ' 

2. The multiplicity o f  an eigenvalue )~lkl+l/2 with Iklfmax <_ )~lkl+J/2 < ([k[ + l ) / fm:,x is 

at most 2[k[ + 1. 

Especia l ly  for the el l ipsoid with axes (a, b, b) we get  

1 
~-I > -  for e v e r y a  > 0 .  

- 2b 
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